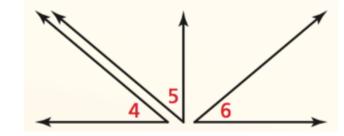

Chapter 2 Reasoning and Proofs

- 2.1 Conditional Statements
- 2.2 Inductive and Deductive Reasoning
- 2.3 Postulates and Diagrams
- 2.4 Algebraic Reasoning
- 2.5 Proving Statements about Segments and Angles
- 2.6 Proving Geometric Relationships

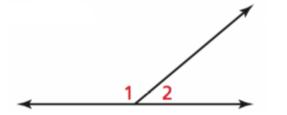
2.6 - Proving Geometric Relationships Theorems



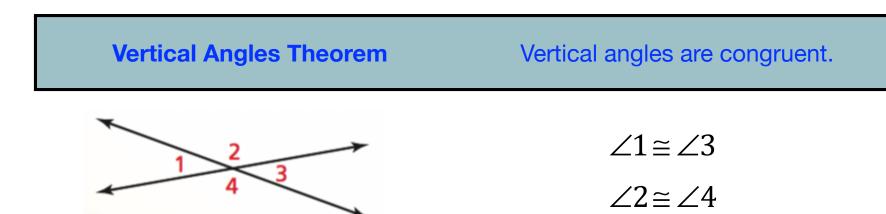
then $\angle 1 \cong \angle 3$.

2.6 - Proving Geometric Relationships Theorems

Congruent Complements Theorem

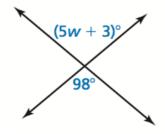

If two angles are complementary to the same angle, then they are congruent.

If $\angle 4$ is complementary to $\angle 5$ and $\angle 6$ is complementary to $\angle 5$, then $\angle 4 \cong \angle 6$.


Linear Pair Postulate

If two angles for a linear pair, then they are supplementary.

If $\angle 1$ and $\angle 2$ form a linear pair, then $\angle 1$ and $\angle 2$ are supplementary.


2.6 - Proving Geometric Relationships Theorems

Compute the angles:

1) If $m \ge 1 = 53^{\circ}$ above, compute the values of angles 2, 3, and 4.

2) Compute the value of w in the diagram below.

2.6 - Proving Geometric Relationships Complete the proof:

Given $\angle 1$ and $\angle 2$ are supplementary. $\angle 1$ and $\angle 3$ are supplementary. Prove $\angle 2 \cong \angle 3$

<u>Statement</u>

<u>Reason</u>

2.6 - Proving Geometric Relationships Complete the proof:

Given $AB = DE, BC = CD$ Prove $\overline{AC} \cong \overline{CE}$	A B C D E
STATEMENTS	REASONS
1. $AB = DE, BC = CD$	1. Given
2. $AB + BC = BC + DE$	2. Addition Property of Equality
3	3. Substitution Property of Equality
4. $AB + BC = AC, CD + DE = CE$	4
5	5. Substitution Property of Equality
6. $\overline{AC} \cong \overline{CE}$	6